Overview
MATH5665 is an honours and postgraduate coursework mathematics/statistics course. See the course overview below.
Units of credit:Ìý6
Prerequisites:Â No formal ones, but at least second year algebra is assumed
Exclusions:Ìý²Ñ´¡°Õ±á3521
Cycle of offering:Â Term 2Â
Graduate attributes:Â The course will enhance your research, inquiry and analytical thinking abilities.
More information:Â The Course outline will be made available closer to the start of term - please visit this website: www.unsw.edu.au/course-outline
Important additional information as of 2023
UNSW Plagiarism Policy
The University requires all students to be aware of its .
For courses convened by the School of Mathematics and Statistics no assistance using generative AI software is allowed unless specifically referred to in the individual assessment tasks.
If its use is detected in the no assistance case, it will be regarded as serious academic misconduct and subject to the standard penalties, which may include 00FL, suspension and exclusion.
°Õ³ó±ðÌý contains information about the course. The timetable is only up-to-date if the course is being offered this year.
If you are currently enrolled in MATH5665, you can log into  for this course.
Course overview
Algebraic topology is the study of knots, links, surfaces and higher dimensional analogs called manifolds with the understanding that continuous deformations do not change objects. So a doughnut (torus) and a coffee mug are essentially the same (homeomorphic) in this course.Â
For example, how does a creature living on a sphere tell that she is not on the plane, on the torus, or perhaps a two holed torus? Can one turn a sphere inside out without creasing it? What would it be like to live inside a three dimensional sphere? Can one continuously deform a trefoil knot to get its mirror image? Can the wind be blowing at every point on the earth at once? Can you tell if a graph is planar? Can you tell if a knot is trivial? Is there a list of all possible two dimensional surfaces? How about three dimensional ones? These are some of the motivating questions for the subject.
Algebraic topology attempts to answer such questions by assigning algebraic invariants such as numbers, or groups, to topological spaces.Â
Examples include the Euler number of a surface, the Poincare index of a vector field, the genus of a torus, the fundamental group and more fancy homology groups. The subject however has a very strong visual and spatial aspect, together with an often informal way of arguing.Â
Connections with geometry, in particular hyperbolic geometry, projective geometry and differential geometry are also important, and models are very helpful. The subject has its origins in complex analysis, with the study of Riemann surfaces.