Mely Classes 0900 - 11:00 Numeris ohie ¥Medsely

1400 -1600 **S**tsts ohie

Workshops 1-bur Numeris For etails , see your enouncetime take

1-bur Sitsts

Course Coordinators

variances and means. Regression.	ANOVA. Numerical solution of linear	and non-linear equations;

16 June	Special random variables	1.4, 1.5, 1.6, 2.4, see	Tute/Lab
Week 3		Maple TA/Mobius	
23 June	Sampling distributions and the Central Limit	5.5-6, Lectures on Maple	Tute/Lab
Week 4	Theorem	TA/Mobius	
30 June	Confidence intervals for means and	7.1-4, see Maple	Tute/Lab
Week 5	proportions	TA/Mobius	

7 JulyiT16 Tn

	Practice solving set problemsAsk questions
Assessments	Demonstrate your knowledge and skills
	Demonstrate higher understanding and problem solving
Laboratory Work	Hands-on work, to set studies in context

EXPECTED LEARNING OUTCOMES

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

Table 5. After successfully completing this course, you should be able to:

Learning Outcome

EA Stage 1 Competencies

Apply the fundamentals of Numerical Methods and Statistics to

1. Engineering problems in the fields of Civil and Environmental Engineering and Surveying and Geospatial Engineering and have practice with the as neact for 23.04 0.48 12.f-0.009-13.6 (i)-13.6 e7a .9 (-.2

There will be a small amount of assessable computer lab work. This will be marked promptly, and students given their results via Moodle.

At least one assessment plus feedback will be completed before the census date of 27 June, 2021. There is no group work assessment in this course.

PENALTIES

Late work will be penalised at the rate of 10% per day after the due time and date have expired.

ASSESSMENT OVERVIEW

Table 6.

Item

Refer to Academic Advice on the School website available at:

 $\underline{https://www.engineering.unsw.edu.au/civil-engineering/student-resources/policies-procedures-and-forms/academic-advice}$

Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

	Program Intended Learning Outcomes
	PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals
<u>.</u>	PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing
owledg III Base	PE1.3 In-depth understanding of specialist bodies of knowledge
PE1: Knowledge and Skill Base	PE1.4 Discernment of knowledge development and research directions
A w	PE1.5 Knowledge of engineering design practice
	PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice
ë Çi	PE2.1 Application of established engineering methods to complex problem solving
PE2: Engineering Application Ability	PE2.2 Fluent application of engineering techniques, tools and resources
32: Eng plicatio	PE2.3 Application of systematic engineering synthesis and design processes
PI Ap	PE2.4 Application of systematic approaches to the conduct and management of engineering projects
	PE3.1 Ethical conduct and professional accountability
ional ttributes	PE3.2 Effective oral and written communication (professional and lay domains)
	PE3.3 Creative, innovative and pro-active demeanour
PE3: Profess and Personal At	PE3.4 Professional use and management of information
PI and F	PE3.5 Orderly management of self, and professional conduct
	PE3.6 Effective team membership and team leadership