

CONTAMINATION MODELS: ESTIMATION, TEST & CLUSTERING

AFRIC Conference Zimbabwe, 2023/7/25

Xavier MILHAUD Actuary and Associate Professor Aix-Marseille University (AMU) - Department of Statistics

Joint work with

Denys Pommeret (D.P.)

Yahia Salhi (Y.S.) Pierre Vandekerkhove (P.V.)

- Motivation and framework
- ² Estimation and Test (with *k* 2 samples)
- ³ Clustering (with *K* 2 samples)

THE CONTAMINATION MODEL FRAMEWORK

An admixture (aka contamination) model is a specific 2-component mixture model where one of the two components is known

Consider an iid random sample $X = (X_1; ...; X_n)$ drawn from the admixture model with cdf *L*.

We have :

$$L(x) = p F(x) + (1 p) G(x); \quad x \ge R$$
(1)

with G a known cdf (gold standard), and p 2]0; 1[.

<u>Goal</u> : estimate from $(X_1; ...; X_n)$ the unknown component weight *p* and the unknown cdf *F*, under minimal assumptions.

AN EXAMPLE : MORTALITY EXPERIENCE

Women (blue), men (red)

In actuarial science/finance, plenty of situations where the distribution looks like this (claim distributions, customer behaviours, ...).

PRICING WITH 'UNCAPTURED' HETEROGENEITY

Assume P1, P2 and P3 are portfolios with low exposure...and

- heterogeneous age-at-death distributions (mixture profile),
- well-known age-at-death distrib. in general pop. (gold standard).
-) Could we pool them to increase exposure for pricing?

Estimation and Test (with k 2 samples)

3 Clustering (with *K* 2 samples)

APPLICATION : SPECIFIC MORTALITY POOLING

! Back to our 3 portfolios (age-at-death densities for female here). From top left to bottom right : french national pop., P1, P2, and P3.

No obvious similar behaviour... Maybe populations 2 and 3?

RESULTS

	Size	Life expectancy	Weight 🌶	P1	P2	P3
P1	1 251	75.42	0.4603	_	23.28	0.717
P2	7 356	74.91	0.7003	1.4e-06	_	18.48
P3	3 456	75.56	0.6281	0.397	1.7e-05	—

- ! According to the test, populations 1 and 3 share a common behaviour (F_1 and F_3) characterizing their specific mortality profile... ... whereas other portfolios combinations lead to reject H_0 .
-) P1 and P3 could be pooled together for pricing!

Limit : pairwise comparisons instead of global test...

EXTENSION OF THE TEST TO THE *k*-SAMPLE CASE

Consider k > 2 samples, each sample $X^{(i)} = (X_1^{(i)}; ...; X_{n_i}^{(i)})$ follows

$$L_i(x) = p_i F_i(x) + (1 p_i)G_i; x 2 R:$$

The test to perform is given by

 H_0 : $F_1 = \dots = F_k$ against H_1 : F_i , F_j for some i, j:

To do so, compare pop. *i* and *j* by defining sub-(*i*; *j*)-testing problem :

 $H_0(i;j): F_i = F_j$ against $H_1(i;j): F_i, F_j;$ (4)

Then,

! Apply IBM for each pair (*i*; *j*) & build a series of embedded r78 9.96 9.92 Tf 73.71

CLUSTER POPULATIONS INSTEAD OF INDIVIDUALS

Adapt the previous test procedure to obtain a data-driven method to cluster *K* unknown populations into *N* subgroups (characterized by a common unknown mixture component).

N of clusters is automatically chosen by the procedure, Each subgroup is validated by the previous testing method.

Novelty : allows to cluster unobserved subpopulations (via unknown components).

! Not trivial because of unknown p_i 's...

! Preprint : X.M., D.P., Y.S., P.V.. Contamination source based K-sample clustering , submitted, 2023. https://hal.science/hal-04129130 .

PLEASE CLUSTER THESE 5 POPULATIONS

Possible choices : [(3,4), (2,5), 1] or [(3,4), 1, 2, 5)] or [(1,2), (4,5), 3]?

Connect to www.menti.com (code : 2732 4825)

SOLUTION

	Pop.1	Pop.2	Pop.3	Pop.4	Pop.5
Size n _i	2000	2500	2000	4500	4000
Unknown weight <i>p</i> i	0.6	0.12	0.15	0.08	0.1
Known distribution G _i	E(1				

CONCLUSION

Fully implemented in R package admix!

- ! Fully tractable solution without shape constraints
- ! Allows for hypothesis testing and clustering;
- ! Clustering is made on unknown/unobserved phenomenons;
- ! An application to the covid-19 pandemics in our last paper (clustering countries).
- ! Actuarial applications whenever pooling can benefit!

Thanks for your attention

!"#\$% !&\$'()' \$!!+" \$!!," \$!!.! \$!-! ./""

!"#\$%&'#≬*+,-'.'/0+ .'\$)*/+ 1 **!"#"\$%\$&'"()**

APPENDIX 1 : 2-sample TESTING STRATEGY

 Inner model convergence regime caracterized by Z(; L₁; L₂) and Z(^c; L

APPENDIX 2 : *k*-sample test, steps of the approach

Apply the theoretical results of IBM for each pair of populations (i; j), and then build a series of embedded statistics

Then, 8*i*, *j* 2 f1; ...;*k*g Estimate b Consider the penalization rule (mimicking Schwarz criteria) :

$$S(n) = \min \bigotimes_{1}^{8} \arg \max_{1} \max_{r \in d(k)} \int_{r} X \sum_{\substack{(i;j) \ge S(k)}} I_{n}(i;j) \mathbf{I}_{\mathbf{f}_{r_{k}}(i;j) = r} \mathbf{g}_{\mathbf{f}_{r_{k}}(i;j) = r}^{19} \mathbf{g}_{\mathbf{f}_{r_{k}}(i;j) = r}^{19$$

N.B. : I_n if of the form n, where should be tuned depending on our guess (H_0 , H_1) to improve the test quality (further details in the paper).

) Our data-driven test statistic is given by

$$U_n = U_{S(n)}$$
:

Simulation results :

! The test shows good empirical levels in many different situations, ! It also has satisfactory empirical power, provided that $n_i p_i$ is high enough.