$\leftarrow \Box \rightarrow$

An insurance company faces a rix kover a period. Reinsurance:

- **f** (X) ! reinsurer
- $R_f(X) = X$ f (X) ! insurer
- The insurer pays premium ($f(X)$) to the reinsurer
- Total risk exposureS^f $(X) = X$ f $(X) + (f(X))$

To minimize

 $(\mathsf{S}^{\mathsf{f}}\,(\mathsf{X}))$

Three factors

- the optimization objective or $S^{f}(X)$ П
- is a the premium principle **Tale**
- \blacksquare f is the ceded loss function

つへへ

- Value-at-Risk: VaR $(X) = (F_X)_L^{-1}$ () (Solvency II);
- Expected Shortfall ES): (Swiss Solvency Test) For 2 [0; 1),

ES (X) =
$$
\frac{1}{1}
$$
^Z₁ VaR_t(X)dt;

■ Range-Value-at-Risk (RVaR) (Cont-Deguest-Scandolo'10 QF): For $0 \leq + \leq 1$.

R_;
$$
(X) = \frac{1}{}
$$
^Z + $Var_{1-t}(X)dt$;

Clearly, R_0 : (X) = ES (X) and $\lim_{x \to 0} R_1(X) = \text{VaR}_1(X)$.

 QQ

Example of premium principles

Expectation principle:

$$
(X)=(1+){\textsf{E}}(X)
$$

for $X \nightharpoondown X$ with ≥ 0 :

Standard deviation principle:

$$
(X) = E(X) + \frac{p \sqrt{Var(X)}}{Var(X)}
$$

for X 2 X with > 0 :

Wang's principle:

$$
g(X) = \int_{0}^{Z} g(P(X > x)) dx
$$

KORKARA REPASA DA VOCA

for $X \nightharpoonup Z X_a$, where $g : [0; 1] / [0; 1]$ with $g(0) = 0$ and $g(1) = 1$, and q is increasing.

Book: Young' 04, eleven widely used premium principles.

Both f and R_f are non-negative and increasing on $(0) = 0$ Lipschitz-continuous, i.e.,

0 f (y) f (x) y x; 0 x y; 0 f (x) x; x 0:

Examples:

- Quota-share: $f(x) = ax$ with $0 \quad a \quad 1$;
- Stop-loss: $f(x) = (x c)_+$ with $c > 0$;
- **Limited stop-loss:**

 $f(x) = (x \ a)_+$ $(x \ b)_+ = min((x \ a)_+; b \ a)$ with 0 a b. (Cai-Chi'20 STRF: review)

÷,

→ 重 ▶

 QQ

An insurance company usually has many lines of business and each line generates a risk χ_i .

KORKAR KERKER E VOOR

Life insurance and non-life insurance.

- Reinsurance for each busines $f_i(X_i) + i(f_i(X_i))$
- The total risk: $S^f = \sum_{i=1}^n X_i f_i(X_i) + \sum_{i} (f_i(X_i))$, where $f = (f_1; \ldots; f_n)$

The task isto minimize (S^f)). The same state \mathcal{S} is the same state \mathcal{S}

- Cai-Wei'12 IME: $(X) = E(u(X))$, $i(X) = (1 + i)E(X)$, and $(X_1; \ldots; X_n)$ are positive dependence through stochastic ordering
- Cheung-Sung-Yam'14 JRI: : convex risk measure, $i(X) = (1 + i)E(X), (X_1; \dots; X_n)$ are comonotonic (the worst case scenario)
- **Bernard-Liu-Vandu el'20 JEBO:** $(X) = E(u(X))$, general premium principle, and some speci c dependence structurex) = $a x$ Quota-Share policy

メ ヨ ト

 Ω

 $\leftarrow \Box \rightarrow$

We impose the following conditions on:

(i) Distribution invariance: For Y ; $Z \ncong X$, $I(Y) \ncong I(Y)$

Limited stop loss policy:

Theorem

For $n = 2$, suppose that F_1^{-1} and F_2^{-1} are continuous over(0; 1), then

$$
\inf_{(f_1; f_2) \geq D} \sup_{(X_1; X_2) \geq E_2(F)} \text{VaR} \ (S_2^f(X_1; X_2))
$$
\n
$$
= \inf_{(a_1; a_2; b_1; b_2) \geq A} \inf_{(P) \ t \geq [0; 1]} L_1(a_1; a_2; b_1; b_2; t);
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

where

 $L_1(a_1; a_2; b_1; b_2; t) = \text{VaR}_{+t}(X_1 \mid l_{a_1; b_1}(X_1)) + \text{VaR}_{1-t};$

メロトメ都トメミドメミド (音) ハン

Theorem

SupposeF₁¹();:::;F_n¹() are all continuous over(0; 1) and 2 (0; 1). If each of F_1 ; ::; F_n is convex beyond its -quantile, then

$$
\inf_{f2D} \sup_{T} \sup_{(X_1;\dots; X_n)2E_n(F)} \text{VaR} \ (S_n^f(X_1;\dots; X_n))
$$
\n
$$
= \inf_{(a; b; c; d)2A_{-1} = 2} \inf_{(1, b; c; d) = 2} H(a; b; c; d;)
$$

where $H(a;b;c;d;) = \frac{P_{n}}{1-1}fR_{i;0}(X_i) - R_{i;0}(h_{a_i;b_i;c_i;d_i}(X_i)) + (h_{a_i;b_i;c_i;d_i}(X_i))g.$ Additionally, if $\;$ i are continuous,($\mathsf{h}_{a_1; b_1; c_1; d_1; \ldots; h_{a_n; b_n; c_n; d_n}}$) is the optimal ceded loss functions for the worst case scenario provided

$$
(a; b; c; d) = arg \inf_{(a; b; c; d) 2A_{1}} \inf_{(a; 1, b; c; d) 2A_{2}} \inf_{(a; b; c; d; b; c; d; b) 2A_{2}}
$$

 Ω

Concave distributions on tail part

To guarantee that X f(X) has a concave distribution on its tail part,

 $D_2^n = ff = (f_1; \ldots; f_n)$: f 2 D; f_i is concave for = 1; :::; ng $g_{a:b}(x) := \text{amin}(x, b)$ a

KOD KAD KED KED E VOOR

Concave tail distributions

Theorem

Suppose $F_1^{-1}($::::: $F_n^{-1}($ are all continuous ove $(0, 1)$ and $(2, 0, 1)$. If each of F_1 :::: F_n is concave beyond its-quantile, then

\n
$$
\inf_{t \geq 0} \sup_{\substack{g \ 2 \ (X_1, \ldots, X_n) \geq E_n(F)}} \text{VaR} \ (S_n^f(X_1; \ldots; X_n))
$$
\n

\n\n $= \inf_{\substack{(a, b) \geq A_{2} \ 2 \ (1)}} \inf_{\substack{g \ (a, b) \ p}} G(a, b)$ \n

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- We extend the result (Theorem 1) of Blanchet-Lam-Liu-Wang 20' on convolution bounds on RVaR aggregation from marginal with decreasing densities in the tail part to those with concave distribution in the tail part.
- We obtain similar results on the optimal reinsurance problems.

 Ω

Numerical studyn $= 2$

We solve

min max VaR $S_2^f(X_1; X_2)$; (1)

KORK STRAIN A STRAIN A COMP

The?5pr\\$\$&As4A61F\$\$4T\$&68AJd9P1T\$B14%\$IJT4Fb886BP\$ 51.66B1 OTG 6YGT_4FcX **\$\$\$\$&4ARRAZ\$\$QT&ARQA 1ARAFT\$RIN\$5\$NT&VF1hA86Z?6 518RZ4 0 TClKXIT_4FAR**

Kロトメ部トメミトメミト ミニの女々

 $\leftarrow \Box \rightarrow$

Example: Exponential marginals

$$
X_i \quad Exp(\quad i) \text{ with } E(X_i) = \quad i > 0
$$

$$
1 = 8000, \quad 2 = 3000, \quad 1 = 0.8, \quad 2 = 0.3, \quad = 0.95 \text{ and } n = 200
$$

 $2Q$

モミト

Our main results show that nding the optimal ceded loss functions for the worst case reinsurance models with dependence uncertainty boils down to nding the minimiser of a deterministic function.

 $\leftarrow \Xi \rightarrow$

 $2Q$

∍

KO KKOKKEKKEK E 1990

Thank You!

 \leftarrow

 299

目

おす悪き

∍