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Monitoring insurance processes

Monitoring mortality rates is crucial for the risk management of life
insurance.

Challenges:
Quickest detection: In a rapidly changing environment,
actuarial assumptions should be monitored quickly and efficiently.
→ Real-time sequential detection
Correlation: Mortality data often exhibit interdependencies
between different age groups or cohorts.
→ Gaussian Process (GP) regression
Multivariate detection: Univariate detection methods ignore
the complex dependence structure, limiting their effectiveness.
→ MCUSUM algorithm
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This presentation

Proposed approach:
I Forecasting: Mortality forecasting based on GP regression.
I MCUSUM monitoring: Tracks differences between predicted

and observed mortality rates, enabling real-time change detection.
Which change?

I Change of level by tracking mortality rates.
I Change of trend by tracking mortality improvements.

Empirical analysis for France, Japan, Canada, and the USA.
The MCUSUM shows quicker detection to univariate alternatives
that ignore dependence.
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Gaussian process for mortality forecasting

Training set: (xi, yi) (i = 1, . . . , n).
I In our case: xi = (xi

age, xi
year) and yi = log(Di/Ei).

I Age: M age-groups, e.g.
z1 = [50; 55);z2 = [55; 60);. . .;zM = [85; 90).

I T years: [1980,2020].
Gaussian process:

f(x) ∼ N (m(x), k(x, x)) ,

where k(x, x) is the covariance matrix.
Completely characterized by mean function m(x) and
covariance/kernel function k(x, x′).
Key reference: Ludkovski et al. (2018).
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Gaussian process for mortality forecasting

GP posterior distribution is multivariate normal.
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The MCUSUM for multivariate normal (continued)

For mortality monitoring, log death rates follow
I In-control process: N (µ1, Σ).
I Out-of-control process: N (µ2, Σ).

The MCUSUM is

St = max
(
St−1 + (µ2 − µ1)′ Σ−1

(
yt − µ1

)
−1

2 (µ2 − µ1)′ Σ−1 (µ2 − µ1) , 0
)

.
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What type of change?

Figure: Mortality rate at age 65 in France with Lee-Carter forecasts, change
of level and change of trend with a change point in 2017.
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Change of level Detection
The change-point model for level change detection can be
expressed as

E [log(µt)] ∼
{

mt for i = 1, . . . , τ

mt for i = τ + 1, . . .

where e.g. mt = mt + log(α)1 with α = 0.9 (longevity risk).
The generalized MCUSUM is defined by:

St = max
(
St−1 + (mt − mt)′ Σ−1

t

(
yt − mt

)
−1

2 (mt − mt)′ Σ−1
t (mt − mt) , 0

)
,

where
1 yt is the vector of observed log death rates.
2 mt and Σt are the mean and covariance from GP-based forecasts.
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Change of trend detection

The change-point model for trend change detection can then be
expressed as

E [∆ log(µt)] ∼
{

mI
t for i = 1, . . . , τ



expressed as E [� log( �t)]�(m

tfor i = 1 m

tfor i = fi + 1 ; : : :

Mortality improvements:� log( �

t) = log(�

t) �log(�

t � 1

m

t= log(exp(m

t) ��

?P� max

1 � i � TSi– L
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Empirical analysis

Countries: France, Canada, USA and Japan.
Ages: 50-89 by 5-year age tranches.
Years:

1 Estimation: 1991-2010.
2 Detection: 2011-2020.

Detection types:
1
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Empirical analysis: change of level
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Empirical analysis: change of trend
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MCUSUM vs univariate CUSUM charts

What is the added value of the MCUSUM?
Standard age-period-cohort models assume perfect correlation
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MCUSUM vs univariate CUSUM charts

What is the added value of the MCUSUM?
Standard age-period-cohort models assume perfect correlation,
e.g. for the Lee-Carter model:

log(µ
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MCUSUM vs univariate CUSUM charts

The comonomotonic CUSUM is defined as

Sc
t = max

(
Sc

t−1 + (µt − µt)
(st − µt)

σt
− 1

2
(µt − µt)2

σt
, 0
)

,

with

µt =
M∑

x=1
mi,t σt =

M∑
x=1

σi,t

µt = µt + M log(α) st =
M∑

x=1
yi,t

with mi,t and σi,t, the mean and standard deviations of the i-th
component of the log death rates vector yt = (y1,t, . . . , yM,t).
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Comparison of the MCUSUM and C-CUSUM charts
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Conclusion

GP-based mortality forecasts combined with the MCUSUM
detection rule provide several benefits:

1 Capture the dependence between age classes.
2 Efficient real-time multivariate monitoring for e.g.

F Change of level.
F Change of trend.

3 Detection of longevity risk in Japan and mortality risk in USA and
Canada over the 10-year period 2011-2020.

4 Outperformance compared to univariate control charts that
ignore the dependence structure.

Thank you for your attention! Any questions?
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Extra slides just in case

Figure: Percentage change between observed and GP-predicted death rates
by age tranches for Japanese males.
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Extra slides just in case

Figure: Estimated correlation matrix for Japanese male death rates in 2011.
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