◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�?

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필 - 《

How Much Has Australia Invested in Knowledge Capital? Intangibles and Growth Accounting

Introduction

Research Problem Econometric Analysis Conclusion & Directions For Further Research About Knowledge Capital How Much Has Australia Invested in Knowledge Capital? Intangibles and Growth Accounting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

About Knowledge Capital How Much Has Australia Invested in Knowledge Capital? Intangibles and Growth Accounting

International Comparison: Australia Lags Behind Many OECDs

About Knowledge Capital How Much Has Australia Invested in Knowledge Capital? Intangibles and Growth Accounting

Impact of Capitalising Intangibles

Figure: Multifactor productivity, market sector, 1974-75 to 2012-13 Index 1974-75= 100, (Elnasri & Fox 2014)

《曰》《御》《臣》《臣》 臣 🔍

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

Production Function Approach

 Start with an aggregate output, Y, function speci ed as a function of technology, A, capital stock, K, and labour input:

Y = A(t)f(K;L)

- In line with Lehr & Lichtenberg (1999) and Connolly & Fox (2006), capital stock is decomposed into knowledge capital K_N and other (tangible/traditional) capital K_T
- The output elasticity of capital, , is speci ed with respect to the `e ective' capital stock $[K_T + (1+\)K_N],$

where

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

Production Function Approach Cont'd

- Labour is decomposed into skilled L_N and unskilled L_T . The output elasticity of labour, $\$, is speci ed with respect to the productivity enhancing e ect of human capital measured by , $[L_T + (1+ \)L_N]$
- Thus, a Cobb-Douglas representation of the production function is given by:

$$Y = A[K_T + (1 +)K_N] [L_T + (1 +)L_N]$$

$$= A[K + K_N] [L + L_N]$$
$$= AK \left[1 + \frac{K_N}{K}\right]$$

Take the natural logarithm:

$$\ln Y = \ln A + \ln K + \ln L + \ln 1 + \frac{K_N}{K}i + \ln 1 + \frac{L_N}{L}i$$

Augment the production function with a vector of other explanatory variables, Z:

$$\ln Y = \ln A + \ln K + \ln L + \frac{K_N}{K} + \frac{L_N}{L} + \int_{j=1}^{K_1} \ln Z_j$$

By using the approximation ln $(1 + \frac{K_N}{K}) = \frac{K_N}{K}$ and ln $(1 + \frac{K_N}{L}) = {}^{L_N}$

▲ロト ▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 의 ● ●

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

Consistent with Solow's (1956) growth accounting approach, an expression of multifactor productivity (MFP) can be written as:

In MFP = In Y - S_K In K - S_L In L = In A + S_K
$$\frac{K_N}{K}$$
 + S_L $\frac{L_N}{L}$
+ $\sum_{j=1}^{X^n} j \ln Z_j;$

where $S_{\!K}$ and $S_{\!L}$ are capital and labour income shares respectively

An alternative representation of the function, which can be used as a robustness check on the validity of the results; specifies and L_N as separate inputs:

$$ln Y = ln A + S_{K_{T}} ln K_{T} + S_{K_{N}} ln K_{N} + S_{L_{T}} ln L_{T} + S_{L_{N}} ln L_{N}$$

$$X^{h} + j ln Z_{j}$$

$$j = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Rewrite the above two models as two regression equations:

Eq1: In MFP_{1t} =
$$a_0 + a_1 \frac{K_{Nt}}{K_t} + a_2 \frac{L_{Nt}}{L_t} + \frac{X^1}{j=1} i \ln Z_j + "_{1t}$$

The coe cient on $\frac{K_{Nt}}{K_t}$ can be used to derive an estimate of weighted by the output elasticity of K ()

Thus, $^{\wedge}$ can be calculated from the formulaa₁ = S_K by using capital's share of income as a proxy for

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

The Regression Equations Cont'd

$$Eq2: In MFP_{2t}$$

$= b_0 + b_1 \ln K_{Nt} + b_2 \ln K_{Tt} + b_3 \ln L_{Nt} + b_4 \ln L_{Tt}$ $\times h$ + j=1

< □ ▶

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필 - 《

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필 - 《

Estimation Results

Is Knowledge Capital Productive?

$$\begin{split} & \text{Eq1:in MFP}_{1t} = a_0 + a_1 \frac{K_{Nt}}{K_t} + a_2 \frac{L_{Nt}}{L_t} + \sum_{j=1}^{N} j \text{ in } Z_j + "_{1t} \\ & \text{Eq2:in MFP}_{2t} = b_0 + b_1 \text{ in } K_{Nt} + b_2 \text{ in } K_{Tt} + b_3 \text{ in } L_{Nt} + b_4 \text{ in } L_{Tt} + \sum_{j=1}^{N} j \text{ in } Z_j + "_{2t} \end{split}$$

Dependant variable :In MFP

Eq1		Eq2				
Knowledge Capital Share (K _N = K)	0.369***	Knowledge Capital	0.399***			
	(0.060)		(0.089)			
Human Capital	0.268**	Skilled	0.177**			
	(0.116)		(0.086)			
		Unskilled	0.144*			
			(0.073)			
Openness	0.227***	Openness	0.143			
	(0.058)		(0.086)			
Unemployment rate	-0.009**	Unemployment rate	-0.010**			
	(0.004)		(0.003)			
Terms of Trade	-0.127***	Terms of Trade	-0.083***			
	(0.042)		(0.025)			
		Other capital	-0.441***			
			(0.063)			
Adj R ²	0.98		0.98			
Durbin-Watson	1.03		1.15			

Numbers in parentheses are heteroscedasticity and autocorrelation robust Newey-West standard errors. ◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Terms *,**,*** denote significance at the 10%, 5% and 1% levels respectively.

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필 - 《

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

Computerised Information

Dependant variable: In MFP	Eq1							Eq	2				
K _N =K	^	С	P-value	1	Decis	sion					Ink	<n n<="" td=""><td></td></n>	
0.0004*	0.050	59E	ta pow2	0	1 0	248	w0	0	m	Ó	01	91075	18

Eq1:In MFP 1t =
$$a_0 + a_1 \frac{K_{nt}}{K_t} + a_2 \frac{L_{Nt}}{L_t} + \frac{x_1^n}{j=1} j \ln Z_j + *_{1t}$$

Eq2:In MFP 2t = $b_0 + b_1 \ln K_{Nt} + b_2 \ln K_{Tt} + b_3 \ln L_{Nt} + b_4 \ln L_{Tt} + \frac{x_1^n}{j=1} j \ln Z_j + *_{2t}$
H₀: ^ = ^c
H₁: ^ 6 ^c

Dependant variable: In MFP		Eq2			
K _N =K	^	С	P-value	Decision	In K _N
0.122* (0.058)	12.69	3:87	(0.159)	Do not Reject H _o ! optimal investment	0.188*** (0.057)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

Other Product Development Design and Research

Eqtin MFP1t2.798J/F36 KG 020.9576(1t43In)]TJ/.9813

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

Brand Equity

Dependant variable: In MFP		Eq2			
K _N =K	^	С	P-value	Decision	In K _N
0.299***	17.028	14.31	(0.415)		1 1

Eq1:ln MFP $_{1t}$ = a ₀ + a ₁ $\frac{K_{nt}}{K_t}$	$x + a_2 \frac{L_{Nt}}{L_t} + \frac{X^1}{j = 1}$ j ln Z j + "1t	
Eq2:ln MFP $_{2t}$ = bo + b ₁ ln K _N	$_{Mt}$ + $b_2 \ln K_{Tt}$ + $b_3 \ln L_{Nt}$ + $b_4 \ln L_{Tt}$ + $i = 1$	+ " 2t
H _o :^= c H ₁ :^6 c		
Dependant variable: In MFP	Eg1	Eq2
K _N =K	^ ^c P-value Decision	Td [(4)]TJ/F6 4.98

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

Organisational Capital

Dependant variable: In MFP		Eq2			
K _N =K	^	с	P-value	Decision	In K _N
0.054*** (0.009)	3.74	9.12	(0.000)	Reject H _o ! de cient returns (i.e., over-investment)	0.092*** (0.032)

The Model Quantifying the Returns to Knowledge Capital Data Estimation Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Mineral Exploration

Eq1:In $MFP_{1t} = a_0 + a_1^{K_{nt}}$

Introduction Research Problem

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

• Estimation results suggest that all types of knowledge capital (except mineral exploration and artistic originals) have

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ - のへで

< □ ▶

Directions for Further Research

- Extend the analysis to the sectoral level. The study is based on data of knowledge capital which is estimated at the level of the market sector. There are two weaknesses inherent in this method
 - It ignores sectoral di erences. The composition and intensity of intangibles investment vary across sectors (e.g., Business R&D is heavily concentrated in manufacturing while services invest more in Organisational Capital)
 - The Australian market sector excludes industries like education, health and government where the use of knowledge capital has the potential to in uence productivity
- With additional observation, a more exible functional form could be adopted to address the complex relationship between knowledge capital, output and inputs
- Relax strong assumptions (perfect competition; constant $\frac{R_N}{R_T}$, imposed by treating ~~ as a constant